Sediment

Bibliography

Ahmad, Z., Singh, U. K., & Kumar, A. (2018). Incipient motion for gravel particles in clay-silt-gravel cohesive mixtures. J Soils Sediments, 18(10), 3082–3093. https://doi.org/10.1007/s11368-017-1869-z

ALEKSEEVSKIY, N. I., BERKOVICH, K. M., & CHALOV, R. S. (2008). Erosion, sediment transportation and accumulation in rivers. International Journal of Sediment Research, 23(2), 93–105. https://doi.org/10.1016/s1001-6279(08)60009-8

Athanasakes, G., & Rosgen, D. (2010, July 1). APPLICATION OF THE FLOWSED AND POWERSED MODELS IN RIVER STABILITY, BRIDGE DESIGN AND RIVER RESTORATION. Wildland Hydrology. https://wildlandhydrology.com/resources/docs/FLOWSED-POWERSED/Athanasakes_Rosgen_2010.pdf

Baker, A., Cashman, M. J., Gellis, A., Noe, G. B., & Cogliandro, V. (2018). Bank‐derived Material Dominates Fluvial Sediment In A Suburban Chesapeake Bay Watershed. USGS. https://pubs.er.usgs.gov/publication/70200806

Barati, R., Neyshabouri, S. A. A. S., & Ahmadi, G. (2018). Issues in Eulerian–Lagrangian modeling of sediment transport under saltation regime. International Journal of Sediment Research, 33(4), 441–461. https://doi.org/10.1016/j.ijsrc.2018.04.003

Bathurst, J. C. (1996). Field Measurement of Boulder Flow Drag. Journal of Hydraulic Engineering, 122(3), 167–169. https://doi.org/10.1061/(asce)0733-9429(1996)122:3(167)

Battista, G., Molnar, P., & Burlando, P. (2020). Modelling impacts of spatially variable erosion drivers on suspended sediment dynamics. Earth Surf. Dynam., 8(3), 619–635. https://doi.org/10.5194/esurf-8-619-2020

Bertin, S., & Friedrich, H. (2018). Effect of surface texture and structure on the development of stable fluvial armors. Geomorphology, 306, 64–79. https://doi.org/10.1016/j.geomorph.2018.01.013

Bressan, L., Guerrero, M., Antonini, A., Petruzzelli, V., Archetti, R., Lamberti, A., & Tinti, S. (2018). A laboratory experiment on the incipient motion of boulders by high-energy coastal flows. Earth Surf. Process. Landforms , 43(14), 2935–2947. https://www.researchgate.net/publication/326093657_A_laboratory_experiment_on_the_incipient_motion_of_boulders_by_high-energy_coastal_flows

Brogan, D. J., Nelson, P. A., & MacDonald, L. H. (2019). Spatial and temporal patterns of sediment storage and erosion following a wildfire and extreme flood. Earth Surf. Dynam., 7(2), 563–590. https://doi.org/10.5194/esurf-7-563-2019

Buffington, J. M. (1999). The Legend of A. F. Shields. Journal of Hydraulic Engineering, 125(4), 376–387. https://doi.org/10.1061/(asce)0733-9429(1999)125:4(376)

Buffington, J. M., & Montgomery, D. R. (1997). A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers. Water Resour. Res., 33(8), 1993–2029. https://doi.org/10.1029/96wr03190

Buffington, J. M., & Montgomery, D. R. (1998). Correction to “A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers.” Water Resour. Res., 34(1), 157–157. https://doi.org/10.1029/97wr03138

Bunte, K., & Abt, S. R. (2001). Sampling surface and subsurface particle-size distributions in wadable gravel-and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. https://doi.org/10.2737/rmrs-gtr-74

Bunte, K., Swingle, K. W., & Abt, S. R. (2007). Guidelines for using bedload traps in coarse-bedded mountain streams: Construction, installation, operation, and sample processing. https://doi.org/10.2737/rmrs-gtr-191

Bussi, G., Dadson, S. J., Bowes, M. J., & Whitehead, P. G. (2017). Seasonal and Interannual Changes in Sediment Transport Identified through Sediment Rating Curves. J. Hydrol. Eng., 22(2), 06016016. https://doi.org/10.1061/(asce)he.1943-5584.0001466

CEIWR-HEC. (1970). Proceedings of a Seminar on Sediment Transport in Rivers and Reservoirs. https://www.hec.usace.army.mil/publications/SeminarProceedings/SP-2.pdf

Chiari, M., Mair, E., & Rickenmann, D. (2004). MODELLING SEDIMENT TRANSPORT DURING A FLOOD EVENT IN A MOUNTAIN STREAM AND COMPARISON WITH LIDAR DATA. http://www.interpraevent.at/palm-cms/upload_files/Publikationen/Tagungsbeitraege/2008_EA_74.pdf

Choi, S. M., Seo, J. Y., Ha, H. K., & Lee, G. (2018). Estimating effective density of cohesive sediment using shape factors from holographic images. Estuarine, Coastal and Shelf Science, 215, 144–151. https://doi.org/10.1016/j.ecss.2018.10.008

Cui, Y., Collins, M. J., Andrews, M., Boardman, G. C., Wooster, J. K., Melchior, M., & McClain, S. (2019). Comparing 1-D sediment transport modeling with field observations: Simkins Dam removal case study. International Journal of River Basin Management, 17(2), 185–197. https://doi.org/10.1080/15715124.2018.1508024

Cui, Y., & Parker, G. (2005). Numerical Model of Sediment Pulses and Sediment-Supply Disturbances in Mountain Rivers. J. Hydraul. Eng., 131(8), 646–656. https://doi.org/10.1061/(asce)0733-9429(2005)131:8(646)

Curran, J. C., & Wilcock, P. R. (2005). Effect of Sand Supply on Transport Rates in a Gravel-Bed Channel. J. Hydraul. Eng., 131(11), 961–967. https://doi.org/10.1061/(asce)0733-9429(2005)131:11(961)

Czuba, J. A. (2018). A Lagrangian framework for exploring complexities of mixed-size sediment transport in gravel-bedded river networks. Geomorphology, 321, 146–152. https://doi.org/10.1016/j.geomorph.2018.08.031

Davis, L. (2009). Sediment Entrainment Potential in Modified Alluvial Streams: Implications for Re-Mobilization of Stored In-Channel Sediment. Physical Geography, 30(3), 249–268. https://doi.org/10.2747/0272-3646.30.3.249

Dearman, T. L., & James, L. A. (2019). Patterns of legacy sediment deposits in a small South Carolina Piedmont catchment, USA. Geomorphology, 343, 1–14. https://doi.org/10.1016/j.geomorph.2019.05.018

Dey, S., Ali, S. Z., & Padhi, E. (2019). Bedload transport from analytical and turbulence phenomenological perspectives. International Journal of Sediment Research, 34(6), 509–530. https://doi.org/10.1016/j.ijsrc.2019.08.002

Dingle, E., Sinclair, H., Venditti, J., Attal, M., Kinnaird, T., Creed, M., Quick, L., Nittrouer, J., & Gautam, D. (n.d.). Sediment dynamics across gravel-sand transitions: Implications for river stability and floodplain recycling. https://doi.org/10.5194/egusphere-egu2020-573

East, A. E., Logan, J. B., Mastin, M. C., Ritchie, A. C., Bountry, J. A., Magirl, C. S., & Sankey, J. B. (2018). Geomorphic Evolution of a Gravel‐Bed River Under Sediment‐Starved Versus Sediment‐Rich Conditions: River Response to the World’s Largest Dam Removal. J. Geophys. Res. Earth Surf., 123(12), 3338–3369. https://doi.org/10.1029/2018jf004703

East, Amy E., Pess, G. R., Bountry, J. A., Magirl, C. S., Ritchie, A. C., Logan, J. B., Randle, T. J., Mastin, M. C., Minear, J. T., & Duda, J. J. (2015). Large-scale dam removal on the Elwha River, Washington, USA: River channel and floodplain geomorphic change. Geomorphology, 228, 765–786. https://doi.org/10.1016/j.geomorph.2014.08.028

Edwards, T. K., & Glysson, G. D. (1988). Field methods for measurement of fluvial sediment. https://doi.org/10.3133/ofr86531

Einstein, H. A. (1951, March 20). The Bed-Load Function for Sediment Transportation in Open Channel Flows. United States Department of Agriculture. https://naldc.nal.usda.gov/download/CAT86201017/PDF

EVIDENCE OF, AND A PROPOSED EXPLANATION FOR, BIMODAL TRANSPORT STATES IN ALLUVIAL RIVERS. (2017). https://doi.org/10.1130/abs/2017am-304642

Gaeuman, D. A., Schmidt, J. C., & Wilcock, P. R. (2003). Evaluation of in-channel gravel storage with morphology-based gravel budgets developed from planimetric data. J. Geophys. Res., 108(F1), n/a-n/a. https://doi.org/10.1029/2002jf000002

García, M. H., Laursen, E. M., Michel, C., & Buffington, J. M. (2000). The Legend of A. F. Shields. J. Hydraul. Eng., 126(9), 718–723. https://doi.org/10.1061/(asce)0733-9429(2000)126:9(718)

Gelfenbaum, G., Stevens, A. W., Miller, I., Warrick, J. A., Ogston, A. S., & Eidam, E. (2015). Large-scale dam removal on the Elwha River, Washington, USA: Coastal geomorphic change. Geomorphology, 246, 649–668. https://doi.org/10.1016/j.geomorph.2015.01.002

Grabowski, R. C., Droppo, I. G., & Wharton, G. (2011). Erodibility of cohesive sediment: The importance of sediment properties. Earth-Science Reviews, 105(3–4), 101–120. https://doi.org/10.1016/j.earscirev.2011.01.008

Graham, D. J., & Gadsden, R. J. (2019). New statistical methods for the comparison and characterization of particle shape. Earth Surf. Process. Landforms, 44(12), 2396–2407. https://doi.org/10.1002/esp.4669

Hagstrom, C. A., Leckie, D. A., & Smith, M. G. (2018). Point bar sedimentation and erosion produced by an extreme flood in a sand and gravel-bed meandering river. Sedimentary Geology, 377, 1–16. https://doi.org/10.1016/j.sedgeo.2018.09.003

Haschenburger, J. K., & Wilcock, P. R. (2003). Partial transport in a natural gravel bed channel. Water Resour. Res., 39(1). https://doi.org/10.1029/2002wr001532

Hassan, M. A., Church, M., Lisle, T. E., Brardinoni, F., Benda, L., & Grant, G. E. (2005). SEDIMENT TRANSPORT AND CHANNEL MORPHOLOGY OF SMALL, FORESTED STREAMS. J Am Water Resources Assoc, 41(4), 853–876. https://doi.org/10.1111/j.1752-1688.2005.tb03774.x

He, G., Fang, H., Wang, J., & Zhang, T. (2019). From fluvial dynamics to eco-fluvial dynamics. International Journal of Sediment Research, 34(6), 531–536. https://doi.org/10.1016/j.ijsrc.2019.05.002

Hergarten, S., & Kenkmann, T. (2019). Long-term erosion rates as a function of climate derived from the impact crater inventory. Earth Surf. Dynam., 7(2), 459–473. https://doi.org/10.5194/esurf-7-459-2019

Hinton, D., Hotchkiss, R., & Ames, D. P. (2017a). Comprehensive and Quality-Controlled Bedload Transport Database. J. Hydraul. Eng., 143(2), 06016024. https://doi.org/10.1061/(asce)hy.1943-7900.0001221

Hinton, D., Hotchkiss, R., & Ames, D. P. (2017b). Comprehensive and Quality-Controlled Bedload Transport Database. J. Hydraul. Eng., 143(2), 06016024. https://doi.org/10.1061/(asce)hy.1943-7900.0001221

Hinton, D., Hotchkiss, R. H., & Cope, M. (2018). Comparison of Calibrated Empirical and Semi-Empirical Methods for Bedload Transport Rate Prediction in Gravel Bed Streams. J. Hydraul. Eng., 144(7), 04018038. https://doi.org/10.1061/(asce)hy.1943-7900.0001474

Hollingshead, A. B. (1971, November). Journal of the Hydraulics Division Proceedings of the American Society of Civil Engineers Sediment Transport Measurements in Gravel River. https://1drv.ms/b/s!AoUGgof_-_huhVewwkdNGPmKYPlu

Huang, J., Greimann, B., & Kimbrel, S. (2019). Simulation of Sediment Flushing in Paonia Reservoir of Colorado. J. Hydraul. Eng., 145(12), 06019015. https://doi.org/10.1061/(asce)hy.1943-7900.0001651

Johnson, K. M., Snyder, N. P., Castle, S., Hopkins, A. J., Waltner, M., Merritts, D. J., & Walter, R. C. (2019). Legacy sediment storage in New England river valleys: Anthropogenic processes in a postglacial landscape. Geomorphology, 327, 417–437. https://doi.org/10.1016/j.geomorph.2018.11.017

Kammerlander, J., Gems, B., Kößler, D., & Aufleger, M. (2017). Effect of bed load supply on sediment transport in mountain streams. International Journal of Sediment Research, 32(2), 240–252. https://doi.org/10.1016/j.ijsrc.2017.03.004

Katz, T., & Crouvi, O. (2018). Sediment flux dynamics over the shallow (25 m depth) shelf of the Mediterranean Sea along the Israeli coast. Marine Geology, 406, 1–11. https://doi.org/10.1016/j.margeo.2018.09.004

King, J. G., Emmett, W. W., Whiting, P. J., Kenworthy, R. P., & Barry, J. J. (2004). Sediment transport data and related information for selected coarse-bed streams and rivers in Idaho. https://doi.org/10.2737/rmrs-gtr-131

Konrad, C., & Gellis, A. (2018). Factors Influencing Fine Sediment on Stream Beds in the Midwestern United States. J. Environ. Qual., 47(5), 1214–1222. https://doi.org/10.2134/jeq2018.02.0060

Lamb, M. P., Dietrich, W. E., & Venditti, J. G. (2008). Is the critical Shields stress for incipient sediment motion dependent on channel-bed slope? J. Geophys. Res., 113(F2). https://doi.org/10.1029/2007jf000831

Lasater, P. (2013, January). Bedload Transport Sampling, Characterization And Modeling On A Southern Appalachian Ridge And Valley Stream. TRACE: Tennessee Research And Creative Exchange. https://trace.tennessee.edu/utk_graddiss/2600/

Li, J.-D., Sun, J., & Lin, B. (2018). Bed-load transport rate based on the entrainment probabilities of sediment grains by rolling and lifting. International Journal of Sediment Research, 33(2), 126–136. https://doi.org/10.1016/j.ijsrc.2017.12.005

Li, Z., Qian, H., Cao, Z., Liu, H., Pender, G., & Hu, P. (2018). Enhanced bed load sediment transport by unsteady flows in a degrading channel. International Journal of Sediment Research, 33(3), 327–339. https://doi.org/10.1016/j.ijsrc.2018.03.002

Lisle, T. E., Buffington, J. M., Wilcock, P. R., & Bunte, K. (2015). Can Rapid Assessment Protocols Be Used to Judge Sediment Impairment in Gravel-Bed Streams? A Commentary. J Am Water Resour Assoc, 51(2), 373–387. https://doi.org/10.1111/jawr.12255

Maaß, A. ‐L., & Schüttrumpf, H. (2019). Reactivation of Floodplains in River Restorations: Long‐Term Implications on the Mobility of Floodplain Sediment Deposits. Water Resour. Res., 55(10), 8178–8196. https://doi.org/10.1029/2019wr024983

Malhotra, K., Lamba, J., & Shepherd, S. (2020). Sources of streambed sediment in an urbanized watershed. CATENA, 184, 104228. https://doi.org/10.1016/j.catena.2019.104228

Mao, L. (2018). The effects of flood history on sediment transport in gravel-bed rivers. Geomorphology, 322, 196–205. https://doi.org/10.1016/j.geomorph.2018.08.046

Merritts, D., Walter, R., & Rahnis, M. (2010, May 1). Sediment and Nutrient Loads from Stream Corridor Erosion along Breached Millponds. Franklin and Marshall College. http://164.156.71.80/Water/ChesapeakeBayProgram/ChesapeakePortalFiles/LegacySedimentWorkgroup/SedimentandNutrientLoadsfromStreamCorridorErosionalongBreachedMillponds.pdf

Métivier, F., Lajeunesse, E., & Devauchelle, O. (2017). Laboratory rivers: Lacey’s law, threshold theory, and channel stability. Earth Surf. Dynam., 5(1), 187–198. https://doi.org/10.5194/esurf-5-187-2017

Meyer, P. E., & Müller, R. (1948, June 7). Formulas For Bed-Load Transport | TU Delft Repositories. TU Delft. https://repository.tudelft.nl/islandora/object/uuid:4fda9b61-be28-4703-ab06-43cdc2a21bd7

Misset, C., Recking, A., Navratil, O., Legout, C., Poirel, A., Cazilhac, M., Briguet, V., & Esteves, M. (2019). Quantifying bed‐related suspended load in gravel bed rivers through an analysis of the bedload‐suspended load relationship. Earth Surf. Process. Landforms. https://doi.org/10.1002/esp.4606

Monsalve, A., Segura, C., Hucke, N., & Katz, S. (2020). A bedload transport equation based on the spatial distribution of shear stress – Oak Creek revisited. Earth Surf. Dynam., 8(3), 825–839. https://doi.org/10.5194/esurf-8-825-2020

Moody, J. A. (2019). Dynamic relations for the deposition of sediment on floodplains and point bars of a freely-meandering river. Geomorphology, 327, 585–597. https://doi.org/10.1016/j.geomorph.2018.11.032

Mueller, E. R., Pitlick, J., & Nelson, J. M. (2005). Variation in the reference Shields stress for bed load transport in gravel-bed streams and rivers. Water Resour. Res., 41(4). https://doi.org/10.1029/2004wr003692

Mukundan, R., Radcliffe, D. E., Ritchie, J. C., Risse, L. M., & McKinley, R. A. (2010). Sediment Fingerprinting to Determine the Source of Suspended Sediment in a Southern Piedmont Stream. J. Environ. Qual., 39(4), 1328–1337. https://doi.org/10.2134/jeq2009.0405

Núñez-González, F., Rovira, A., & Ibàñez, C. (2018). Bedload transport and incipient motion below a large gravel bed river bend. Advances in Water Resources, 120, 83–97. https://doi.org/10.1016/j.advwatres.2017.07.026

Nyman, P., Box, W. A. C., Stout, J. C., Sheridan, G. J., Keesstra, S. D., Lane, P. N. J., & Langhans, C. (2020). Debris‐flow‐dominated sediment transport through a channel network after wildfire. Earth Surf. Process. Landforms, 45(5), 1155–1167. https://doi.org/10.1002/esp.4785

Palucis, M. C., Ulizio, T. P., Fuller, B., & Lamb, M. P. (2018). Flow resistance, sediment transport, and bedform development in a steep gravel-bedded river flume. Geomorphology, 320, 111–126. https://doi.org/10.1016/j.geomorph.2018.08.003

Papanicolaou, A. N., Bdour, A., & Wicklein, E. (2004). One-dimensional hydrodynamic/sediment transport model applicable to steep mountain streams. Journal of Hydraulic Research, 42(4), 357–375. https://doi.org/10.1080/00221686.2004.9728402

Papanicolaou, Athanasios N. (1997, May). The Role of Turbulence on the Initiation of Sediment Motion. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.675.4802

Parker, G. (2004). The Uses of Sediment Transport and Morphodynamic Modeling in Stream Restoration. https://doi.org/10.1061/40737(2004)432

Parker, Gary. (2000). Short Course: Geomorphological Fluid Mechanics Chapter 2 Transportation Cyclic Steps. Hydro Lab. http://hydrolab.illinois.edu/people/parkerg/_private/CourseNotes/StOyenCh2.pdf

Parker, Gary, Toro-Escobar, C. M., Ramey, M., & Beck, S. (2003). Effect of Floodwater Extraction on Mountain Stream Morphology. J. Hydraul. Eng., 129(11), 885–895. https://doi.org/10.1061/(asce)0733-9429(2003)129:11(885)

Payo, A., Walkden, M., Ellis, M., Barkwith, A., Favis-Mortlock, D., Kessler, H., Wood, B., Burke, H., & Lee, J. (2018). A Quantitative Assessment of the Annual Contribution of Platform Downwearing to Beach Sediment Budget: Happisburgh, England, UK. JMSE, 6(4), 113. https://doi.org/10.3390/jmse6040113

Pfeiffer, A. M., & Finnegan, N. J. (2018). Regional Variation in Gravel Riverbed Mobility, Controlled by Hydrologic Regime and Sediment Supply. Geophys. Res. Lett., 45(7), 3097–3106. https://doi.org/10.1002/2017gl076747

Pitlick, J., Cui, Y., & Wilcock, P. (2009, May). Manual For Computing Bed Load Transport Using BAGS (Bedload Assessment For Gravel-bed Streams) Software. United States Department of Agriculture. https://www.fs.usda.gov/treesearch/pubs/32965

Plumb, B. D., Juez, C., Annable, W. K., McKie, C. W., & Franca, M. J. (2020). The impact of hydrograph variability and frequency on sediment transport dynamics in a gravel‐bed flume. Earth Surf. Process. Landforms, 45(4), 816–830. https://doi.org/10.1002/esp.4770

Powell, M. D. (1998). Patterns and processes of sediment sorting in gravel-bed rivers. 22(1), 1–32. https://doi.org/10.1191/030913398666402127

P.R. Wilcock Papers. (n.d.). Retrieved November 3, 2020, from https://1drv.ms/b/s!AoUGgof_-_huhSl6znGV83M26iSa

P.R. Wilcock References. (n.d.). Retrieved November 3, 2020, from https://1drv.ms/b/s!AoUGgof_-_huhSoo3ckymOCkn-wN

Pritchard, M. K. (2007, May 1). Influence of Fine Sediment Introduced To An Armored Bed Downstream From A Dam. https://digital.library.txstate.edu/handle/10877/3366

Puttock, A., Graham, H. A., Carless, D., & Brazier, R. E. (2018). Sediment and nutrient storage in a beaver engineered wetland. Earth Surf. Process. Landforms, 43(11), 2358–2370. https://doi.org/10.1002/esp.4398

Ramalingam, S., & Chandra, V. (2018). Influence of live microbes on suspended sediment concentration in coastal ecosystem. Marine Geology, 405, 108–113. https://doi.org/10.1016/j.margeo.2018.08.007

Randle, T. J., Bountry, J. A., & Greimann, B. P. (2010). Guidelines for Assessing Sediment-Related Effects of Dam Removal. https://doi.org/10.1061/41114(371)181

Randle, T. J., Bountry, J. A., Ritchie, A., & Wille, K. (2015). Large-scale dam removal on the Elwha River, Washington, USA: Erosion of reservoir sediment. Geomorphology, 246, 709–728. https://doi.org/10.1016/j.geomorph.2014.12.045

Recking, A. (2010). A comparison between flume and field bedload transport data and consequences for surface-based bedload transport prediction. Water Resour. Res., 46(3). https://doi.org/10.1029/2009wr008007

Recking, A. (2013). Simple Method for Calculating Reach-Averaged Bed-Load Transport. J. Hydraul. Eng., 139(1), 70–75. https://doi.org/10.1061/(asce)hy.1943-7900.0000653

Recking, Alain. (2012). Influence of sediment supply on mountain streams bedload transport. Geomorphology, 175–176, 139–150. https://doi.org/10.1016/j.geomorph.2012.07.005

Reid, L. M., & Dunne, T. (1996, January). Rapid Evaluation of Sediment Budget. Research Gate. https://www.researchgate.net/publication/247332796_Rapid_Evaluation_of_Sediment_Budgets

Richardson, W. B., Bartsch, L. A., Bartsch, M. R., Kiesling, R., & Lafrancois, B. M. (2019). Nitrogen cycling in large temperate floodplain rivers of contrasting nutrient regimes and management. River Res Applic, 35(5), 529–539. https://doi.org/10.1002/rra.3267

Roberts, M. O., Renshaw, C. E., Magilligan, F. J., & Brian Dade, W. (2020). Field Measurement of the Probability of Coarse-Grained Sediment Entrainment in Natural Rivers. J. Hydraul. Eng., 146(4), 04020024. https://doi.org/10.1061/(asce)hy.1943-7900.0001694

Rosgen, D. (2010, January). THE APPLICATION AND VALIDATION OF DIMENSIONLESS SEDIMENT RATING CURVES. Research Gate. https://www.researchgate.net/publication/228493841_The_application_and_validation_of_dimensionless_sediment_rating_curves

Schlindwein, A. (2006a). A Method to Select Surface Bed Samples that Represent Bankfull Conditions in Active Gravel Channels. https://doi.org/10.1061/40856(200)347

Schlindwein, A. (2006b). Natural Channel Design Difficulties When Confronted with Anthropogenic Downstream Fining in a Sand-Pebble Channel. https://doi.org/10.1061/40856(200)348

Smith, E., Daniller-Varghese, M. S., Myrow, P. M., & Mohrig, D. (2019). Experimental Investigations of Combined Flow Sediment Transport. 89(8), 808–814. https://doi.org/10.2110/jsr.2019.43

Solve for a critical discharge pertaining to a specified dimensionless shear stress Problem 3 Part 1. (n.d.). https://1drv.ms/b/s!AoUGgof_-_huhSdLWu1y2AS-shU7

Solve for a critical discharge pertaining to a specified dimensionless shear stress Problem 3 Part 2. (n.d.). Retrieved November 3, 2020, from https://1drv.ms/b/s!AoUGgof_-_huhSaH6BR_RpbJzuxx

Sturm, M., Gems, B., Keller, F., Mazzorana, B., Fuchs, S., Papathoma-Köhle, M., & Aufleger, M. (2018). Understanding impact dynamics on buildings caused by fluviatile sediment transport. Geomorphology, 321, 45–59. https://doi.org/10.1016/j.geomorph.2018.08.016

Taki, K., & Parker, G. (2005). Transportation cyclic steps created by flow over an erodible bed. Part 1. Experiments. Journal of Hydraulic Research, 43(5), 488–501. https://doi.org/10.1080/00221680509500147

Thomas, W. A. (1977). Hydrologic Engineering Methods For Water Resources Development Volume 12 Sediment Transport. https://www.hec.usace.army.mil/publications/IHDVolumes/IHD-12.pdf

Troendle, C. A., Rosgen, D. L., Ryan, S. E., & Porth, L. (2001, January). Developing a “Reference” Sediment Transport Relationship. Research Gate. https://www.researchgate.net/publication/252293223_Developing_a_Reference_Sediment_Transport_Relationship

Van Eps, M. A., Formica, S. J., Morris, T. L., Beck, J. M., & Cotter, A. S. (n.d.). USING A BANK EROSION HAZARD INDEX (BEHI) TO ESTIMATE ANNUAL SEDIMENT LOADS FROM STREAMBANK EROSION IN THE WEST FORK WHITE RIVER WATERSHED. https://doi.org/10.13031/2013.17386

van Rijn, L.C. (2019). Critical movement of large rocks in currents and waves. International Journal of Sediment Research, 34(4), 387–398. https://doi.org/10.1016/j.ijsrc.2018.12.005

van Rijn, Leo C., Bisschop, R., & Rhee, C. van. (2019). Modified Sediment Pick-Up Function. J. Hydraul. Eng., 145(1), 06018017. https://doi.org/10.1061/(asce)hy.1943-7900.0001549

Walter, R. C., & Merritts, D. J. (2008). Natural Streams and the Legacy of Water-Powered Mills. Science, 319(5861), 299–304. https://doi.org/10.1126/science.1151716

Warrick, J. A., Bountry, J. A., East, A. E., Magirl, C. S., Randle, T. J., Gelfenbaum, G., Ritchie, A. C., Pess, G. R., Leung, V., & Duda, J. J. (2015). Large-scale dam removal on the Elwha River, Washington, USA: Source-to-sink sediment budget and synthesis. Geomorphology, 246, 729–750. https://doi.org/10.1016/j.geomorph.2015.01.010

Wilcock, P., Pitlick, J., & Cui, Y. (2008, February 10). Sediment Transport Primer Estimating Bed-Material Transport in Gravel-bed Rivers. Stillwater Sciences, Inc. . https://1drv.ms/b/s!AoUGgof_-_huhh30DWm28-dqTg68

Wilcock, P. R. (1997). Entrainment, displacement and transport of tracer gravels. Earth Surf. Process. Landforms , 22(12), 1125–1138. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9837%28199712%2922%3A12%3C1125%3A%3AAID-ESP811%3E3.0.CO%3B2-V

Wilcock, P. R. (2001). Toward a practical method for estimating sediment-transport rates in gravel-bed rivers. Earth Surf. Process. Landforms, 26(13), 1395–1408. https://doi.org/10.1002/esp.301

Wilcock, P. R., Barta, A. F., Shea, C. C., Kondolf, G. M., Matthews, W. V. G., & Pitlick, J. (1996). Observations of Flow and Sediment Entrainment on a Large Gravel-Bed River. Water Resour. Res., 32(9), 2897–2909. https://doi.org/10.1029/96wr01628

Wilcock, P. R., & DeTemple, B. T. (2005). Persistence of armor layers in gravel-bed streams. Geophys. Res. Lett., 32(8). https://doi.org/10.1029/2004gl021772

Wilcock, P. R., Pitlick, J., & Cui, Y. (2009, January). Sediment Transport Primer Estimating Bed-Material Transport in Gravel-bed Rivers. Research Gate. https://www.researchgate.net/publication/252141249_Sediment_Transport_Primer_Estimating_Bed-Material_Transport_in_Gravel-Bed_Rivers

Wong, M., & Parker, G. (2004, August). The Bedload Transport Relation of Meyer-Peter and Muller Overpredicts by a Factor of Two. Journal of Hydraulic Engineering. https://1drv.ms/b/s!AoUGgof_-_huhXQsZpOlPW0SU8PO

Wong, M., & Parker, G. (2006). Reanalysis and Correction of Bed-Load Relation of Meyer-Peter and Müller Using Their Own Database. J. Hydraul. Eng., 132(11), 1159–1168. https://doi.org/10.1061/(asce)0733-9429(2006)132:11(1159)

XU, H., LU, J., & LIU, X. (2008). Non-uniform sediment incipient velocity. International Journal of Sediment Research, 23(1), 69–75. https://doi.org/10.1016/s1001-6279(08)60006-2

Yager, E. M., Venditti, J. G., Smith, H. J., & Schmeeckle, M. W. (2018). The trouble with shear stress. Geomorphology, 323, 41–50. https://doi.org/10.1016/j.geomorph.2018.09.008

Yang, C. T. (n.d.). Noncohesive Sediment Transport. Retrieved November 5, 2020, from https://1drv.ms/b/s!AoUGgof_-_huhiRcuN5OdNRZtKhx

Yang, C.-C., & Lee, K. T. (2018). Analysis of flow-sediment rating curve hysteresis based on flow and sediment travel time estimations. International Journal of Sediment Research, 33(2), 171–182. https://doi.org/10.1016/j.ijsrc.2017.10.003

Previous
Previous

Scour

Next
Next

Stage 0